Combinatorics
Question 1 |
12 |
― ― ― ― ―
Given: L I L A C
The derangements formula ⎣n!/e⎦ cannot be directly performed as there are repeated characters.
Let’s proceed in regular manner:
The L, L can be placed in other ‘3’ places as

(1) Can be arranged such that A, I, C be placed in three positions excluding ‘C’ being placed at its own position, which we get only 2×2×1=4 ways.
Similarly (2) can be filled as A, I, C being placed such that 4th position is not filled by A, so we have 2×2×1= 4 ways. Similarly with (3).
Totally, we get 4+4+4 = 12 ways.
Question 2 |
3/(1-x)2 | |
3x/(1-x)2 | |
2-x/(1-x)2 | |
3-x/(1-x)2 |

Question 3 |
The number of integers between 1 and 500 (both inclusive) that are divisible by 3 or 5 or 7 is _________.
271 | |
272 | |
273 | |
274 |

Let A = number divisible by 3
B = numbers divisible by 5
C = number divisible by 7
We need to find “The number of integers between 1 and 500 that are divisible by 3 or 5 or 7" i.e., |A∪B∪C|
We know,
|A∪B∪C| = |A|+|B|+C-|A∩B|-|A∩C|-|B∩C|+|A∩B|
|A| = number of integers divisible by 3
[500/3 = 166.6 ≈ 166 = 166]
|B| = 100
[500/5 = 100]
|C| = 71
[500/7 = 71.42]
|A∩B| = number of integers divisible by both 3 and 5 we need to compute with LCM (15)
i.e.,⌊500/15⌋ ≈ 33
|A∩B| = 33
|A∩C| = 500/LCM(3,7) 500/21 = 23.8 ≈ 28
|B∩C| = 500/LCM(5,3) = 500/35 = 14.48 ≈ 14
|A∩B∩C| = 500/LCM(3,5,7) = 500/163 = 4.76 ≈ 4
|A∪B∪C| = |A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|
= 166+100+71-33-28-14+4
= 271
Question 5 |
Let an be the number of n-bit strings that do NOT contain two consecutive 1s. Which one of the following is the recurrence relation for an?
an = a(n-1) + 2a(n-2) | |
an = a(n-1) + a(n-2) | |
an = 2a(n-1) + a(n-2) | |
an = 2a(n-1) + 2a(n-2) |
If n=1, we have {0,1}
# Occurrences = 2
If n=2, we have {00,01,10}
# Occurrences = 3
If n=3, we have {000,001,010,100,101}
# Occurrences = 5
It is evident that a3 = a1 + a2
Similarly, an = an-1 + an-2
Question 6 |
The coefficient of x12 in (x3 + x4 + x5 + x6 + ...)3 is _________.
10 | |
11 | |
12 | |
13 |
⇒ [x3(1 + x + x2 + x3 + ...)]3
= x9(1 + x + x2 + x3 + ...)3
First Reduction:
As x9 is out of the series, we need to find the co-efficient of x3 in (1 + x + x2 + ⋯)3

Here, m=3, k=3, the coefficient

= 5C3 = 5!/2!3! = 10
Question 7 |
Consider the recurrence relation a1 = 8, an = 6n2 + 2n + an-1. Let a99 = K × 104. The value of K is ___________.
198 | |
199 | |
200 | |
201 |
Replace a(n-1)

⇒ an = 6n2 + 2n + 6(n-1)2 + 2(n-1) + 6(n-2)2 + 2(n-2) + ⋯ a1
Given that a1 = 8, replace it
⇒ an = 6n2 + 2n + 6(n-1)2 + 2(n-1) + 6(n-2)2 + 2(n-2) + ⋯8
= 6n2 + 2n + 6(n-1)2 + 2(n-1) + 6(n-2)2 + 2(n-2) + ⋯ + 6(1)2 + 2(1)

= 6(n2 + (n-1)2 + (n-2)2 + ⋯ + 22 + 12) + 2(n + (n-1) + ⋯1)
Sum of n2 = (n(n+1)(2n+1))/6
Sum of n = (n(n+1))/2
= 6 × (n(n+1)(2n+1))/6 + 2×(n(n+1))/2
= n(n+1)[1+2n+1]
= n(n+1)[2n+2]
= 2n(n+1)2
Given a99 = k×104
a99 = 2(99)(100)2 = 198 × 104
∴k = 198
Question 8 |
36 | |
37 | |
38 | |
39 |
=22+3×52×7 (i.e., product of primes)
Then the number of divisions of 2100 is
(2+1)∙(1+1)∙(2+1)∙(1+1) i.e., (3)(2)(3)(2) i.e., 36
Question 9 |
15 | |
16 | |
17 | |
18 |
1 1 1 1
1 1 1 2
1 1 1 3
1 1 2 2
1 1 2 3
1 1 3 3
1 2 2 2
1 2 2 3
1 2 3 3
1 2 3 3
1 3 3 3
2 2 2 2
2 2 2 3
2 2 3 3
2 3 3 3
3 3 3 3
Hence, total 15 4-digit no. are possible.
Question 10 |
89 | |
90 | |
91 | |
92 |
Single two: 211111111 ⇒ 9!/8!1! = 9 pennants
Two twos: 22111111 ⇒ 8!/6!2! = 28
Three twos: 2221111 ⇒ 7!/3!4! = 35
Four twos: 222211 ⇒ 6!/4!2! = 15
Five twos: 22222 ⇒ 1
Total = 89 pennants.
Question 11 |
0.26 | |
0.27 | |
8 | |
0.29 |
= 2' × 19' × 53'
Now number of distinct integral factors of 2014 will be,
(1+1)×(1+1)×(1+1) = 2×2×2 = 8
Question 12 |
27 | |
28 | |
29 | |
30 |

Question 13 |
![]() | |
![]() | |
![]() | |
![]() |

Question 14 |
![]() | |
220
| |
210 | |
None of the above |
So now we have 10 u's and 10 r's, i.e.,
uuuuuuuuuurrrrrrrrrr
So, finally the no. of arrangements of above sequences is,

Question 15 |
29 | |
219 | |
![]() | |
![]() |
So, no. of paths possible if line segment from (4,4) to (5,4) is taken is,
= paths possible from (0,0) to (4,4) * paths possible from (5,4) to (10,10)
= {uuuurrrr} * {uuuuuurrrrr}

Hence, the final answer is

Question 16 |
![]() | |
![]() | |
![]() | |
![]() |
Then,
x1 = c ⋅ (x0)2 - 2 = 1 ⋅ (1)2 - 2 = -1
x2 = c ⋅ (x1)2 - 2 = 1 ⋅ (-1)2 - 2 = -1
So, the value converges to -1, which is equal to

Exactly, only (B) is answer. As all the term of x converges to -1.
Question 17 |
(i) 0nly | |
(i) and (ii) only | |
(i), (ii) and (iii) only | |
(i), (ii), (iii) and (iv) |
From the recurrence we should have c(xn)2 - xn - 2 < 0
For all the above values of c we have above equation as negative.
Question 18 |
(n-|A ∪ B|) |A| |B| | |
(|A|2+|B|2)n2
| |
n!(|A∩B|/|A∪B|) | |
![]() |
Two arbitrary subsets A⊆N and B⊆N.
Out of n! permutations π from N to N, to satisfy
min(π(A)) = min (π(B))
*) π(S) is the set of integers obtained by applying permutation π to each element of S.
If min(π(A)) =min (π(B)), say y = π(x) is the common minimum.
Since the permutation π is a 1-to-1 mapping of N,
x ∈ A∩B
∴ A∩B cannot be empty.
⇒ y = π(x)
= π(A∩B) is the minimum of π(A∪B) is the minimum of π(A) and π(B) are to be same.
You can think like
*) If the minimum of π(A) and π(B) are same [min π(A)] = min [π(B)]
then min(π(A∩B)) = min(π(A∪B))
∴ Total number is given by n! |A∩B|/|A∪B|
*) Finally
Considering all possible permutations, the fraction of them that meet this condition |π(A∩B)| / |π(A∪B)|
[The probability of single permutation].
Ex: N = {1, 2, 3, 4} A = {1, 3} B = {1, 2, 4}

Since π is one to one mapping
|π(A∩B)| = |A∩B|
∴ π(A) = {1, 2}
π(B) = {1, 4, 3}
π(A∩B) = {1}
π(A∪B) = {1, 2, 3, 4}
4! × 1/4 = 6
Question 19 |
i
| |
i+1
| |
2i | |
2i |

Put g(i) = i+1

S = 1 + 2x + 3x2 + 4x3 + .....
Sx = 1x + 2x2 + 3x3 + 4x4 + ......
S - Sx = 1 + x + x2 + x3 + .....
[Sum of infinite series in GP with ratio < 1 is a/1-r]
S - Sx = 1/(1-x)
S(1-x) = 1/(1-x)
S = 1/(1-x)2
Question 20 |
Mala has a colouring book in which each English letter is drawn two times. She wants to paint each of these 52 prints with one of k colours, such that the colour-pairs used to colour any two letters are different. Both prints of a letter can also be coloured with the same colour. What is the minimum value of k that satisfies this requirement?
9 | |
8 | |
7 | |
6 |
Each is printed twice the no. of letters = 26×2 = 52
If Mala has k colours, she can have k pairs of same colours.
She also can have kC2 different pairs in which each pair is having different colours.
So total no. of pairs that can be coloured = k+kC2
k+kC2 ≥ 26
k+k(k-1)/2 ≥ 26
k(k+1)/2 ≥ 26
k(k+1) ≥ 52
k(k+1) ≥ 7*8
k≥7
Question 21 |
![]() | |
![]() | |
![]() | |
![]() |
i) Both husband and wife comes
ii) Only wife comes
iii) Both are not come
The no. of different gatherings possible at party is
= 3 * 3 * 3 * 3 * ... n times
= 3n
Question 22 |
![]() | |
![]() | |
![]() | |
![]() |

. So option (B) is correct
Question 24 |
3 | |
8 | |
9 | |
12 |
No. of suits = 4(P)
Apply pigeon hole principal.
Then number of pigeons= n
floor [(n-1)/P] + 1 = 3
floor [(n-1)/P] = 2
floor [(n-1)] =8
floor (n) = 8 + 1
n ≥ 9
Minimum no. of cards, n = 9
Question 25 |
n-1Ck | |
nCk | |
nCk+1 | |
None of the above |
XOXOXOXOXOXOX
n+1 gaps can be possible, where 1's can be placed so that no two one's are adjacent. So, no. of ways in which k 1's can be placed in n+1 gaps are,
n+1Ck
Question 26 |
1638 | |
2100 | |
2640 | |
None of the above |
n+r-1Cr-1
So for 10 roses,
10+2-1C2-1 = 11C1 = 11
For 15 sunflowers,
15+2-1C2-1 = 16C1 = 16
For 15 daffodils,
15+2-1C2-1 = 16C1 = 16
∴ The final answer is,
11×16×16 = 2816
Question 27 |
2240 | |
2296 | |
2620 | |
4536 |

If last digit is (2, 4, 6, 8)

Total possibilities = 504 + 1792 = 2296
Question 28 |
15!/(5!)3 | |
15! | |
(15/5) | |
15!(5!3!) |
