Number-Systems
Question 1 |
If R3 = R1/R2, what is the value stored in R3?
0x40800000
| |
0x83400000
| |
0xC8500000
| |
0xC0800000
|


Question 2 |
Consider the unsigned 8-bit fixed point binary number representation below,
-
b7b6b5b4b3 ⋅ b2b1b0
where the position of the binary point is between b3 and b2 . Assume b7 is the most significant bit. Some of the decimal numbers listed below cannot be represented exactly in the above representation:
-
(i) 31.500 (ii) 0.875 (iii) 12.100 (iv) 3.001
Which one of the following statements is true?
None of (i), (ii), (iii), (iv) can be exactly represented
| |
Only (ii) cannot be exactly represented
| |
Only (iii) and (iv) cannot be exactly represented
| |
Only (i) and (ii) cannot be exactly represented
|
= 16 + 8 + 4 + 2 + 1 + 0.5
= (31.5)10
(ii) (0.875)10 = (00000.111)2
= 2-1 + 2-2 + 2-3
= 0.5 + 0.25 + 0.125
= (0.875)10
(iii) (12.100)10
It is not possible to represent (12.100)10
(iv) (3.001)10 It is not possible to represent (3.001)10
Question 3 |
2-f to 2i | |
2-f to (2i - 2-f) | |
0 to 2i | |
0 to (2i - 2-f ) |
Number of bits in fraction part → f-bits
Number of bits in integer part → (n – f) bits

Minimum value:
000…0.000…0 = 0
Maximum value:

= (2 n-f - 1) + (1 - 2 -f
= (2n-f - 2 -f)
= (2i - 2 -f )
Question 4 |
The representation of the value of a 16-bit unsigned integer X in hexadecimal number system is BCA9. The representation of the value of X in octal number system is
136251 | |
736251 | |
571247 | |
136252 |
Each hexadecimal digit is equal to a 4-bit binary number. So convert
X = (BCA9)16 to binary

Divide the binary data into groups 3 bits each because each octal digit is represented by 3-bit binary number.
X = (001 011 110 010 101 001)2
Note: Two zeroes added at host significant position to make number bits of a multiple of 3 (16 + 2 = 18)
X = (136251)8
Question 5 |
Given the following binary number in 32-bit (single precision) IEEE-754 format:
The decimal value closest to this floating-point number is
1.45 × 101 | |
1.45 × 10-1 | |
2.27 × 10-1 | |
2.27 × 101 |

For single-precision floating-point representation decimal value is equal to (-1)5 × 1.M × 2(E-127)
S = 0
E = (01111100)2 = (124).
So E – 127 = - 3
1.M = 1.11011010…0
= 20 + 2(-1) + 2(-1) + 2(-4) + 2(-5) + 2(-7)
= 1+0.5+0.25+0.06+0.03+0.007
≈ 1.847
(-1)5 × 1.M × 2(E-127)
= -10 × 1.847 × 2-3
≈ 0.231
≈ 2.3 × 10-1
Question 6 |
Consider a quadratic equation x2 - 13x + 36 = 0 with coefficients in a base b. The solutions of this equation in the same base b are x = 5 and x = 6. Then b=________.
8 | |
9 | |
10 | |
11 |
Generally if a, b are roots.
(x - a)(x - b) = 0
x2 - (a + b)x + ab = 0
Given that x=5, x=6 are roots of (1)
So, a + b = 13
ab=36 (with same base ‘b’)
i.e., (5)b + (6)b = (13)b
Convert them into decimal value
5b = 510
610 = 610
13b = b+3
11 = b+3
b = 8
Now check with ab = 36
5b × 6b = 36b
Convert them into decimals
5b × 6b = (b×3) + 610
30 = b × 3 + 6
24 = b × 3
b = 8
∴ The required base = 8
Question 7 |
Consider a binary code that consists of only four valid code words as given below:
Let the minimum Hamming distance of the code be p and the maximum number of erroneous bits that can be corrected by the code be q. Then the values of p and q are
p=3 and q=1 | |
p=3 and q=2 | |
p=4 and q=1 | |
p=4 and q=2 |
Minimum Distance = p = 3

Error bits that can be corrected = (p-1)/2 = (3-1)/2 = 1
∴ p=3 and q=1
Question 8 |
The 16-bit 2’s complement representation of an integer is 1111 1111 1111 0101; its decimal representation is __________.
-11 | |
-12 | |
-13 | |
-14 |
It is a negative number because MSB is 1.
Magnitude of 1111 1111 1111 0101 is 2’s complement of 1111 1111 1111 0101.
1111 1111 1111 0101
0000 0000 0000 1010 : 1’s Complement
0000 0000 0000 1011 : 2’s complement
= (11)10
Hence, 1111 1111 1111 0101 = -11
Question 9 |
Let X be the number of distinct 16-bit integers in 2’s complement representation. Let Y be the number of distinct 16-bit integers in sign magnitude representation.
Then X-Y is _________.
1 | |
2 | |
3 | |
4 |
Since range is - 215 to 215 - 1
Y = 216 - 1
Here, +0 and -0 are represented separately.
X - Y = 216 - (216 - 1)
= 1
Question 10 |
312/20 = 13.1
5 | |
6 | |
7 | |
8 |
(3r2 + r + 2) / 2r= (r+3+1/r)
(3r2 + r + 2) / 2r= (r2+3r+1) / r
(3r2 + r + 2) = (2r2+6r+2)
r2 -5r = 0
Therefor r = 5
Question 11 |
3 | |
5 | |
6 | |
7 |
(123)5 = (x8)y
In R.H.S. since y is base so y should be greater than x and 8, i.e.,
y > x
y > 8
Now, to solve let's change all the above bases number into base 10 number,
52 × 1 +2 × 5 + 3 = y × x + 8
38 = xy + 8
xy = 30
⇒ yx = 30
So the possible combinations are
(1,30), (2,15), (3,10), (5,6)
But we will reject (5,6) because it violates the condition (y > 8).
So, total solutions possible is 3.
Question 12 |
C1640000H | |
416C0000H | |
41640000H | |
C16C0000H |
(14.25)10 = 1110.01000
= 1.11001000 x 23
23 bit Mantissa = 11001000000000000000000
Biased Exponent = exponent + bias
= 3 + 127 = 130 = 1000 0010
(-14.25) in 32-bit IEEE-754 floating point representation is
1 10000010 11001000000000000000000
=1100 0001 0110 0100 0000 0000 000 0000
= (C 1 6 4 0 0 0 0)16
Question 14 |
P+Q | |
![]() | |
P⨁Q | |
![]() |
⊕ is associative i.e P ⊕ (Q ⊕ R) = (P⊕Q) ⊕ R.
P ⊕ P = 0, 1 ⊕ P = P’ and 0 ⊕ Q = Q
(1 ⊕ P ) ⊕ ((P ⊕ Q) ⊕ (P ⊕ Q)) ⊕ (Q ⊕ 0)
= P’⊕ (0) ⊕ Q
= P’ ⊕ Q
= (P ⊕ Q)’
Question 15 |
-256 | |
-128 | |
-127 | |
0 |
The smallest 8-bit 2’s complement number is 1000 0000.
MSB is 1. So it is a negative number.
To know the magnitude again take 2’s complement of 1000 0000.
1000 0000
0111 1111 ← 1’s complement
1000 0000 ← 2’s complement (1’s complement +1)
= 128
-128 is 1000 0000 in 2’s complement representation.
Question 16 |
xy+x'y' | |
x⊕y' | |
x'⊕y | |
x'⊕y' |
x’ ⊕ y’ = xy’ + x’y = x⊕y. Hence option D is correct.
Question 17 |
fraction bits of 000…000 and exponent value of 0 | |
fraction bits of 000…000 and exponent value of −1 | |
fraction bits of 100…000 and exponent value of 0 | |
no exact representation |
So, value of the exponent = -1
and
fraction is 000…000 (Implicit representation)
Question 18 |
(C3D8)16 | |
(187B)16 | |
(F878)16 | |
(987B)16 |
(F87B)16=(1111 1000 0111 1011)2. (It is a negative number which is in 2's complement form)
P=1111 1000 0111 1011 (2's complement form)
8 * P = 23* P= 1100 0011 1101 1000. ( NOTE: Left shift k times is equivalent to Multiplication by 2k)
Hence, 1100 0011 1101 1000 is 2's complement representation of 8P.
1100 0011 1101 1000 = (C3D8)16.
Question 19 |
(1217)16
| |
(028F)16
| |
(2297)10
| |
(0B17)16 |
Divide the bits into groups, each containing 4 bits.
=(0010 1000 1111)2
=(28F)16
Question 20 |
the normalized value 2-127 | |
the normalized value 2-126
| |
the normalized value +0
| |
the special value +0
|

Question 21 |
decimal 10
| |
decimal 11
| |
decimal 10 and 11 | |
any value >2
|

Any value of r will satisfy the above equation. But the radix should be greater than 2 because the 121 has 2. So r >2 is correct.
Question 22 |
-10 | |
-13 | |
-26 | |
None of these |
Exponent bits - 10000011
Exponent can be added with 127 bias in IEEE single precision format then outval exponent
= 10000011 - 127
= 131 - 127
= 4
→ In IEEE format, an implied 1 is before mantissa, and hence the outval number is
→ 1.101 × 24 = -(11010)2 = -26
Question 23 |
1, 1, 0 | |
1, 0, 0 | |
0, 1, 0 | |
1, 0, 1 |

Carry flag = 1
Overflow flag = 0
Sign bit = 0 (MSB bit is 0)
Overflow flag:
In computer processors, the overflow flag is usually a single bit in a system status register used to indicate when an arithmetic overflow has occurred in an operation.
Question 24 |
6 | |
8 | |
10 | |
12 |
Now we have some values defined for pair of bits in Booth’s Algorithm,
00 → 0
11 → 0
01 → -1
10 → 1
Now after adding 0 to the LSB of the multiplier, start traversing from left to right and accordingly put the values defined above.

Hence, total 8 additions / subtractions required.
Question 25 |
(135103.412)O | |
(564411.412)O | |
(564411.205)O | |
(135103.205)O |
= 1100000000010010.00100101 - 0000010111001110.10100000
= 1011101001000011.10000101
= 1011101000011.100001010
= (135103.412)O
Question 26 |
g0(h3h2h1h0) = Σ(1,2,3,6,10,13,14,15) | |
g1(h3h2h1h0) = Σ(4,9,10,11,12,13,14,15) | |
g2(h3h2h1h0) = Σ(2,4,5,6,7,12,13,15) | |
g3(h3h2h1h0) = Σ(0,1,6,7,10,11,12,13)
|

g2(h3h2h1h0) = Σ(2,4,5,6,7,12,13,15)
Question 27 |
0001 and an overflow | |
1001 and no overflow | |
0001 and no overflow | |
1001 and an overflow |
2's complement of 1100 = 1100
Add = 1111
Now convert 1111 to normal form.
⇒ 0000 (1's complement)
⇒ 0001 (2's complement) No carry bit.
Question 28 |

2Y and Y | |
-2Y and 2Y | |
-2Y and 0 | |
0 and Y |

⇒ -2Y and 0
Question 29 |
- 2n-1 to (2n-1 - 1) | |
- (2n-1 - 1) to (2n-1 - 1)
| |
- 2n-1 to 2n-1
| |
- (2n-1 + 1) to (2n-1 - 1) |
The smallest (negative) n bit number is 100..0 (i.e., 1 followed by n-1 zeros) which is equal to - 2n-1.
1000...00
0111...11 <- 1’s complement
1000..00 <- 2’s complement
= - 2n-1
Question 30 |

0D 24 | |
0D 4D | |
4D 0D
| |
4D 3D
|
Convert 0.239 to binary
0.239 * 2 = 0.478
0.478 * 2 = 0.956
0.956 * 2 = 1.912
0.912 * 2 = 1.824
0.824 * 2 = 1.648
0.648 * 2 = 1.296
0.296 * 2 = 0.512
0.512 * 2 = 1.024
Mantissa = (0. 00111101)2
Bias= 64. So biased exponent is 13+64 = 77= (1001101)2
0.239 × 213 = 0 1001101 00111101
= 0100 1101 0011 1101
= 4 D 3 D
Question 31 |

0A 20
| |
11 34
| |
4D D0
| |
4A E8
|
Convert 0.239 to binary
0.239 * 2 = 0.478
0.478 * 2 = 0.956
0.956 * 2 = 1.912
0.912 * 2 = 1.824
0.824 * 2 = 1.648
0.648 * 2 = 1.296
0.296 * 2 = 0.512
0.512 * 2 = 1.024
Mantissa = (0. 00111101)2
0.239 × 213 = 1.11101000 x 210 <- Normalized Mantissa
Bias = 64. So biased exponent is 10+64 = 74 = (1001010)2
0.239 × 213 = 0 1001010 11101000
= 0100 1010 1110 1000
= (4 A E 8)16
Question 32 |
1AF
| |
D78 | |
D71 | |
32F
|
Make 3 zeros on the left side so that the number of bits is multiple of 4.
= (0001 1010 1111)2
= (1 A F)16
Question 33 |
(1053.6)8 | |
(1053.2)8 | |
(1024.2)8 | |
None of these |
(34.4)8 = 3×81 + 4×80 + 4×8-1
= 24 + 4 + 0.5
= (28.5)10
(23.4)8 = 2×81 + 3×80 + 4×8-1
= 16 + 3 + 0.5
= (19.5)10
Now,
(28.5)10 × (19.5)01 = (555.75)10
Now,
(555.75)10 = ( ? )8
To convert the integer part,

We get, 1053.
To convert the fractional part, keep multiplying by 8 till decimal part becomes 0,

∴ (555.75)10 = (1053.6)8
Question 34 |
8, 16
| |
10, 12 | |
9, 13
| |
8, 11
|
7x+3 = 5y+4
7x-5y = 1
Only option (D) satisfies above equation.
Question 35 |
9.51 and 10.0 respectively
| |
10.0 and 9.51 respectively
| |
9.51 and 9.51 respectively
| |
10.0 and 10.0 respectively
|
= (2) + 7.51
= 9.51 (✔️)
113. + (-111. + 7.51)
= 113. + (-103.51)
= 113. + -103
= 10 (✔️)
Question 36 |
1100 0100
| |
1001 1100
| |
1010 0101
| |
1101 0101 |
B = 0000 1010 = 1010 [2's complement number]
A×B = -6×10 = - 6010
⇒ -6010 = 101111002
= 110000112 (1's complement)
= 110001002 (2's complement)
Question 37 |
(A72E)16 and (22130232)4 | |
(A72E)16 and (22131122)4 | |
(A73E)16 and (22130232)4 | |
(A62E)16 and (22120232)4
|
= (00 1010 0111 0010 1110)2
= (A72E)16
Also,
(001 010 011 100 101 110)2
= (00 10 10 01 11 00 10 11 10)2
= (22130232)4
Question 38 |
I and III | |
I, II and III | |
II and IV | |
I, II, III and IV
|
Given transmitted codewords are

By inspection we can find the rule for generating each of the parity bits,

Now from above we can see that (I) and (III) are only codewords.
Question 39 |
11100111 | |
11100100
| |
11010111
| |
11011011
|
MSB bit is '1' then all numbers are negative
1's complement = 00000100
2's complement = 00000100 + 00000001 = 00000101 = -5
(A) 11100111 - (-25)10
(B) 11100100 - (-28)10
(C) 11010111 - (-41)10
(D) 11011011 - (-37)10
Answer: Option A (-25 is divisible by -5)
Question 40 |
Bit position 15 14 . . . 9 8 . . . . .0 s e m Sign Exponent MantissaLet s,e, and m be the numbers represented in binary in the sign, exponent, and mantissa fields respectively. Then the floating point number represented is:

2-40
| |
2-9
| |
222 | |
231 |
The largest number is 1.111111111× 262-31 = (2−2−9)×231
Second largest number is 1.111111110×262-31 = (2−2-8)×231
Difference = (2−2−9)×231 - (2−2-8)×231
= (2-8−2−9) ×231
= 2−9×231
= 222
Question 41 |
is equivalent to the binary value 0.1 | |
is equivalent to the binary value 0.01 | |
is equivalent to the binary value 0.00111… | |
cannot be represented precisely in binary |
Multiply 0.25 by 2.
0.25×2 = 0.50 (product)
Fractional part = 0.50
Carry = 0
2nd Multiplication iteration:
Multiply 0.50 by 2.
0.50×2 = 1.00 (product)
Fractional part = 0.00
Carry = 1
The fractional part in the 2nd iteration becomes zero and so we stop the multiplication iteration.
Carry from 1st multiplication iteration becomes MSB and carry from 2nd iteration becomes LSB. So the result is 0.01.
Question 42 |
1111 | |
11111 | |
111111 | |
10001 |
-15 = 11111
1's complement = 10000
2's complement = 10001
Question 43 |
floating point multiplication | |
signed 16 bit integer addition | |
arithmetic left shift | |
converting a signed integer from one size to another |
Question 44 |
is flagged whenever there is carry from sign bit addition | |
cannot occur when a positive value is added to a negative value | |
is flagged when the carries from sign bit and previous bit match | |
None of the above |
Question 46 |
01010101 | |
11010101 | |
00101011 | |
10101011 |
Question 47 |
X = 1.0, Y = 1.0 | |
X = 1.0, Y = 0.0 | |
X = 0.0, Y = 1.0 | |
X = 0.0, Y = 0.0 |
A = 2.0 * 1030, C = 1.0
So, A + C should make the 31st digit to 1, which is surely outside the precision level of A (it is 31st digit and not 31st bit). So, this addition will just return the value of A which will be assigned to Y.
So, Y + B will return 0.0 while X + C will return 1.0.
Question 48 |
0 – 100 + 1000 | |
0 – 100 + 100 -1 | |
0 – 1 + 100 – 10 + 1 | |
00 – 10 + 100 - 1 |
-57 = 1100 0111
In Booth's algorithm, an operation (ADD or SUB) or/and Arithmetic Right Shift (ARS) operation is performed based on two least significant bits(Q0 Q-1) of Multiplier.
(Note: After RIGHT shift operation bits in higher significant positions move to lower significant position)

Question 49 |
Sign magnitude | |
1’s complement | |
2’s complement | |
None of the above | |
Both A and B |
+0 = 0000
-0 = 1000
1's complement:
+0 = 0000
-0 = 1111
Question 50 |
226 | |
-98 | |
76 | |
-30 |
If this can be treated as 8 bit integer, then the first becomes sign bit i.e., '1' then the number is negative.
8085 uses 2's complement then

⇒ -30
Question 51 |
Suppose the domain set of an attribute consists of signed four digit numbers. What is the percentage of reduction in storage space of this attribute if it is stored as an integer rather than in character form?
80% | |
20% | |
60% | |
40% |
We have four digits. So to represent signed 4 digit numbers we need 5 bytes, 4 bytes for four digits and 1 for the sign.
So required memory = 5 bytes.
Now, if we use integer, the largest no. needed to represent is 9999 and this requires 2 bytes of memory for signed representation.
9999 in binary requires 14 bits. So, 2 bits remaining and 1 we can use for sign bit.
So, memory savings,
= 5 - 2/5 × 100
= 60%
Question 53 |
0 to 1 | |
0.5 to 1 | |
2-23 to 0.5 | |
0.5 to (1-2-23) |
Question 55 |
Consider n-bit (including sign bit) 2’s complement representation of integer number. The range of integer values, N, that can be represented is _________ ≤ N ≤ _________
-2n-1 to 2n-1 - 1 |
Question 56 |
(a) 6.625, (b) (45E)H |
= 4 + 2 + 0 + 0.5 + 0 + 0.125
= 6.625
(b) 1118 mod 16 = E, quotient = 69
69 mod 16 = 5, quotient = 4
4 mod 16 = 4
Writing the mods result in reverse order gives (45E)H.
Question 57 |
ABE | |
DBC | |
DE5 | |
9E7 |
For (-539)10 = (1101 1110 0100)2
1's complement = (1101 1110 0100)2
2's complement = (1101 1110 0101)2
= (DE5)16
Question 58 |
f = x1' + x2 | |
f = x1'x2 + x1x2' | |
f = x1x2 + x1'x2' | |
f = x1 + x2' |
g = (1 and x1’) or (0 and x1)
g = x1’
f = ac’ + bc
f = (a and x2′) or (b and x2)
f = (g and x2′) or (x1 and x2)
f = x1’x2’ + x1x2
Question 59 |
9 |
(9753)16
It's binary representation is,
1001011101010011
∴ The no. of 1's is 9.
Question 60 |
c1 = b1a0 ⊕ a1b0 |

⇒ c1 = b1a0 ⊕ a1b0
Question 61 |
The dynamic range is large. | |
The precision is high. | |
The smallest number is represented by all zeros. | |
Overflow is avoided. |