Probability
Question 1 |

0.5 |

Question 2 |
Two people, P and Q, decide to independently roll two identical dice, each with 6 faces, numbered 1 to 6. The person with the lower number wins. In case of a tie, they roll the dice repeatedly until there is no tie. Define a trial as a throw of the dice by P and Q. Assume that all 6 numbers on each dice are equi-probable and that all trials are independent. The probability (rounded to 3 decimal places) that one of them wins on the third trial is __________.
0.021 | |
0.022 | |
0.023 | |
0.024 |
⇾ A person wins who gets lower number compared to other person.
⇾ There could be “tie”, if they get same number.
Favorable cases = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
Probability (tie) = 6/36 (when two dice are thrown, sample space = 6 × 6 = 36)
= 1/6
“Find the probability that one of them wins in the third attempt"
⇾ Which means, first & second time it should be tie and third time it should not be tie
⇾ P (tie) * P (tie) * P (not tie)
⇒ 1/6* 1/6 * (1 - 1/6)
⇒ (5/36×6) = 0.138/6 = 0.023
Question 3 |
Let X be a Gaussian random variable with mean 0 and variance σ2. Let Y = max(X, 0) where max(a,b) is the maximum of a and b. The median of Y is __________.
0 | |
1 | |
2 | |
3 |
Median is a point, where the probability of getting less than median is 1/2 and probability of getting greater than median is 1/2.
From the given details, we can simply conclude that, median is 0. (0 lies exactly between positive and negative values)

Question 4 |
Nβ (1 - β) | |
Nβ | |
N (1 - β) | |
Not expressible in terms of N and β alone |
Given gy (z) = (1 - β + βz)N ⇾ it is a binomial distribution like (x+y)n
Expectation (i.e., mean) of a binomial distribution will be np.
The polynomial function

given

Mean of Binomial distribution of b(xj,n,p)=

The probability Mass function,

Given:

Question 5 |
![]() | |
![]() | |
![]() | |
![]() |
Probability that ‘P’ applies for the job given that Q applies for the job = P(p/q) = 1/2 ⇾ (2)
Probability that ‘Q’ applies for the job, given that ‘P’ applies for the job = P(p/q) = 1/3 ⇾ (3)
Bayes Theorem:
(P(A/B) = (P(B/A)∙P(A))/P(B) ; P(A/B) = P(A∩B)/P(B))
⇒ P(p/q) = (P(q/p)∙P(p))/p(q)
⇒ 1/2 = (1/3×1/4)/p(q)
p(q) = 1/12×2 = 1/(6) (P(q) = 1/6) ⇾ (4)
From Bayes,
P(p/q) = (P(p∩q))/(P(q))
1/2 = P(p∩q)/(1⁄6)
(p(p∩q) = 1/12)
We need to find out the “probability that ‘P’ does not apply for the job given that q does not apply for the job = P(p'/q')
From Bayes theorem,
P(p'/q') = (P(p'∩q'))/P(q') ⇾ (5)
We know,
p(A∩B) = P(A) + P(B) - P(A∪B)
also (P(A'∩B') = 1 - P(A∪B))
P(p'∩q') = 1 - P(p∪q)
= 1 - (P(p) + P(q) - P(p∩q))
= 1 - (P(p) + P(q) - P(p) ∙ P(q))
= 1 - (1/4 + 1/6 - 1/12)
= 1 - (10/24 - 2/24)
= 1 - (8/24)
= 2/3
(P(p'∩q') = 2/3) ⇾ (6)
Substitute in (5),
P(p'⁄q') = (2⁄3)/(1-P(q)) = (2⁄3)/(1-1/6) = (2⁄3)/(5⁄6) = 4/5
(P(p'/q') = 4/5)
Question 6 |
If a random variable X has a Poisson distribution with mean 5, then the expectation E[(X + 2)2] equals _________.
54 | |
55 | |
56 | |
57 |
Mean = Variance
E(X) = E(X2) - (E(X))2 = 5
E(X2) = 5 + (E(X))2 = 5 + 25 = 30
So, E[(X + 2)2] = E[X2 + 4 + 4X]
= E(X2) + 4 + 4E(X)
= 30 + 4 + 4 × 5
= 54
Question 7 |
A probability density function on the interval [a,1] is given by 1/x2 and outside this interval the value of the function is zero. The value of a is _________.
0.7 | |
0.6 | |
0.5 | |
0.8 |
or

where (a, b) is internal and f(x) is probability density function.
Given,
f(x) = 1/x2 , a≤x≤1
The area under curve,

- 1 + 1/a = 1
1/a = 2
a = 0.5
Question 8 |
Consider the following experiment.
-
Step1. Flip a fair coin twice.
Step2. If the outcomes are (TAILS, HEADS) then output Y and stop.
Step3. If the outcomes are either (HEADS, HEADS) or (HEADS, TAILS), then output N and stop.
Step4. If the outcomes are (TAILS, TAILS), then go to Step 1.
The probability that the output of the experiment is Y is (up to two decimal places) ________.
0.33 | |
0.34 | |
0.35 | |
0.36 |
Stop conditions:
If outcome = TH then Stop [output 4] --------------- (1)
else
outcome = HH/ HT then Stop [output N] -------------- (2)
We get ‘y’ when we have (1) i.e., ‘TH’ is output.
(1) can be preceded by ‘TT’ also, as ‘TT’ will reset (1) again
Probability of getting y = TH + (TT)(TH) + (TT)(TT)(TH) + …
= 1/2 × 1/2 + 1/2 × 1/2 × 1/2 × 1/2 + ...
= (1/4)/(1-1/4)
= 1/3
= 0.33
Question 9 |
Suppose that a shop has an equal number of LED bulbs of two different types. The probability of an LED bulb lasting more than 100 hours given that it is of Type 1 is 0.7, and given that it is of Type 2 is 0.4. The probability that an LED bulb chosen uniformly at random lasts more than 100 hours is _________.
0.55 | |
0.56 | |
0.57 | |
0.58 |

The bulbs of Type 1, Type 2 are same in number.
So, the probability to choose a type is 1/2.
The probability to choose quadrant ‘A’ in diagram is
P(last more than 100 hours/ type1) = 1/2 × 0.7
P(last more than 100 hours/ type2) = 1/2 × 0.4
Total probability = 1/2 × 0.7 + 1/2 × 0.4 = 0.55
Question 10 |
0.75 | |
0.76 | |
0.77 | |
0.78 |

Pr(Y=0/ X3=0) = Pr(Y=0 ∩ X3=0)/ Pr(X3=0)
= 3/8 / 4/8 = 3/4 = 0.75
Question 11 |
10 | |
11 | |
12 | |
13 |
To get ‘22’ as Sum of four outcomes
x1 + x2 + x3 + x4 = 22
The maximum Sum = 6+6+6+6 = 24 which is near to 22
So, keeping three 6’s, 6+6+6+x = 22
x = 4 combination① = 6 6 6 4
Keeping two 6’s, 6+6+x1+x2 = 22
x1+x2 = 10 possible x’s (5, 5) only
combination② = 6 6 5 5
No. of permutation with 6664 = 4!/ 3! = 4
“ “ “ 6655 = 4!/ 2!2! = 6
Total = 4+6 = 10 ways out of 6×6×6×6 = 1296
Pnb (22) = 10/1296 ⇒ x = 10
Question 12 |
11.90 | |
11.91 | |
11.92 | |
11.93 |
Out of which ‘4’ are chosen at random without replaced and created.
If at least three of them are working then system is deemed functional
i.e., there should be only ‘one’ non-working system in set of ‘4’.
It is possible with combination
W – W – W – N,
W – W – N – W,
W – N – W – W,
N – W – W – W.
For W – W – W – N, the probability = (choosing working out of 10) × (choosing working out of 9) × (choosing working out of 8) × (choosing non-working out of 7)
=4/10×3/9×2/8×1/7
where 4/10 ⇒ 4 working out of 10
3/9 ⇒ 3 working are remaining out of ‘9’ as ‘1’ is already taken
For ‘4’ Sum combinations
Total probability =4×[4/10×3/9×2/8×1/7]=600/5040
We need 100p ⇒100×600/5040=11.90
Question 13 |
3.9 | |
4.0 | |
4.1 | |
4.2 |
There are ‘9’ words in this sentence.
No. of characters in each word
The (3)
quick (5)
brown (5)
fox (3)
jumps (5)
over (4)
the (3)
lazy (4)
dog (3)
Each word has equal probability.
So expected length = 3×1/9+5×1/9+5×1/9+3×1/9+5×1/9+ 4×1/9+3×1/9+4×1/9+3×1/9
=35/9
=3.9
Question 14 |
0.259 to 0.261 | |
0.260 to 0.262 | |
0.261 to 0.263 | |
0.262 to 0.264 |
n(A)=50, n(B)=33, n(C)=20
n(A∩B)=16, n(B∩C)=6, n(A∩C)=10
n(A∩B∩C)=3
P(A∪B∪C)=P(A)+P(B)+P(C)-P(A∩B)-P(B∩C) -P(A∩C)+P(A∩B∩C)=74/100
∴ Required probability is P(A∩B∩C)=1-P(A∪B∪C)=0.26
Question 15 |
0.25 | |
0.26 | |
0.27 | |
0.28 |
P(A∪B) = P(A) + P(B) + P(A∩B) = 1 →①
But, as A and B are mutually exclusive events
P(A∩B) = 0
∴ P(A∪B) = P(A) + P(B) = 1 →②
Arithmetic mean of two numbers ≥ Geometric mean of those two numbers
(P(A)+P(B))/2≥√(P(A)∙P(B))
1/2≥√(P(A)∙P(B)) (∵from ②)
Squaring on both sides
1/4≥P(A)∙P(B)
P(A)∙P(B)≤1/4
∴ Maximum value of P(A)P(B) = 1/4 = 0.25
Question 16 |
8/(2e3) | |
9/(2e3) | |
17/(2e3) | |
26/(2e3) |
P(x:λ)=(e-λ λx)/x! for x = 0,1,2….
‘λ’ is the average number (mean)
Given that mean = λ = 3
The probability of observing fewer than three cars is
P(zero car) + P(one car) + P(two cars)
=(e-3 30)/0!+(e-3 31)/1!+(e-3 32)/2!
=e-3+e-3∙3+(e-3)∙9)/2
=(17e-3<)/2
=17/(2e3 )
Question 17 |
0 and 0.5 | |
0 and 1 | |
0.5 and 1 | |
0.25 and 0.75 |
The sum of probabilities at x=1, x=-1 itself is 0.5+0.5 =1. It is evident that, there is no probability for any other values.
The F(x=-1) is 0.5 as per given probabilities and
F(x=1) = sum of F(x=-1) +F(x=0)=...f(X=1) = 0.5 +0.5 =1
Question 18 |
10/21 | |
5/12 | |
2/3 | |
1/6 |
The value on second time can be {1, 2, 3, 4, 5, 6}
So the Sum can be

We have Sample space = 36
The no. of events where (Sum = atleast 6) = {6, 7, 6, 7, 8, 6, 7, 8, 9}
So the probability atleast ‘6’ while getting {1, 2, 3} in first time = 9/36 → ①
If we get ‘6’ in the first time itself, then we do not go for rolling die again.
So, its probability = 1/6
Total probability = 1/6 + 9/36 = 1/6 + 1/4 = 10/24 = 5/12
Question 19 |
R = 0 | |
R < 0 | |
R ≥ 0 | |
R > 0 |
So the answer will be R≥0.
Question 20 |
1/3 | |
1/4 | |
1/2 | |
2/3 |
Question 21 |
1/5 | |
4/25 | |
1/4 | |
2/5 |
(2,1) (3,2) (4,3) (5,4).
So only 4 possibilities are there and sample space will be,
5C1 × 4C1 = 20
So probability = 4/20 = 1/5
Question 22 |
pq + (1 - p)(1 - q)
| |
(1 - q)p
| |
(1 - p)q
| |
pq |
= Probability of testing process gives the correct result × Probability that computer is faulty + Probability of tetsing process giving incorrect result × Probability that computer is not faulty
= p × q + (1 - p) (1 - q)
Question 23 |
1/625 | |
4/625 | |
12/625
| |
16/625 |
We can write 1099 as 1096×103
So, (1099)/(1096) to be a whole number, [1096×103/1096]➝ (1)
We can observe that every divisor of 103 is a multiple of 1096
So number of divisor of 103 to be found first
⇒ 103=(5×2)3=23×53
No. of divisors = (3 + 1) (3 + 1) = 16
Total number of divisor of 1099 are 1099=299×599=100×100=10000
Probability that divisor of 1099 is a multiple of 1096 is
⇒16/10,000
Question 24 |
0.453
| |
0.468
| |
0.485 | |
0.492
|
P(e) = Probability of getting even no. face.
It is given that,
P(0) = 0.9 P(e) ----- (I)
Also we know that,
P(0) + P(e) = 1 ----- (II)
Solving equation (I) and (II) we get,
P(e) = 0.52
Also even no. can be 2 or 4 or 6.
And given in question that P(2) = P(4) = P(6).
So, 3 × P(2) = 0.52
P(2) = 0.175
So, P(2) = P(4) = P(6) = 0.175
Also in question it is given that,
P(e/>3) = 0.75
P(even no. greater than 3)/ P(no. greater than 3) = 0.75
P(4,6)/P(>3) = 0.75
(0.175×2)/P(>3) = 0.75
P(>3) = 0.35/0.75 = 0.467
Question 25 |
0.24
| |
0.36 | |
0.4 | |
0.6
|
(i) She study Mathematics on Tuesday and computer science on wednesday.
⇒ 0.6×0.4
⇒ 0.24
(ii) She study computer science on Tuesday and computer science on wednesday.
⇒ 0.4×0.4
⇒ 0.16
→ The probability that she study computer science on wednesday is
0.24+0.16=0.40
Question 26 |
3 | |
2 | |
√2 | |
1 |
We can compare their values using standard normal distributions.

The above equation satisfies when σy will be equal to 3.
Question 27 |
11/12 | |
10/12 | |
9/12 | |
8/12 |
P(A') = 1/3; P(A) = 2/3
P(B') = 1/3; P(B) = 2/3
P(A ∪ B) = P(A) +P(B) - P(A ∩ B)
= 2/3 + 2/3 - 1/2
= 4+4-3/ 6
= 5/6
= 10/12
Question 28 |
![]() | |
![]() | |
![]() | |
![]() |

Question 29 |
1/2 | |
1/10 | |
9!/20! | |
None of these
|
→ Total no. of possible even number = 10
→ Here we are not considering odd number.
→ The probability that 2 appears at an earlier position than any other even number is =1/10
Question 30 |
7/8 | |
1/2 | |
7/16 | |
5/32 |
The probability of obtaining heads
= (1/2)(5/8) + (1/2)(1/4)
= (5/16) + (1/8)
= 7/16
Question 31 |
5 | |
6 | |
7 | |
10 |
Probability of collision for each entry = 1/20
After inserting X values then probability becomes 1/2
i.e., (1/20)X = 1/2
X = b
Question 32 |
In a multi-user operating system on an average, 20 requests are made to use a particular resource per hour. The arrival of requests follows a Poisson distribution. The probability that either one, three or five requests are made in 45 minutes is given by :
6.9 × 106 × e-20 | |
1.02 × 106 × e-20 | |
6.9 × 103 × e-20 | |
1.02 × 103 × e-20 |
So, λ=15

Question 33 |
1/n | |
2 | |
√n | |
n |
The given probability Pi is for selection of each item independently with probability 1/2.
Now, Probability for x1 to be smallest in S = 1/2
Now, Probability for x2 to be smallest in S = Probability of x1 not being in S × Probability of x2 being in S
= 1/2 × 1/2
Similarly, Probability xi to be smallest = (1/2)i
Now the Expected value is

Question 34 |
![]() | |
![]() | |
![]() | |
![]() |
No. of elements selected = n
Probability of getting head = ½
Probability of n heads out of 2n coin tosses is
2nCn*(1/2)n*(1/2)n=2nCn/4n
Question 35 |
In a certain town, the probability that it will rain in the afternoon is known to be 0.6. Moreover, meteorological data indicates that if the temperature at noon is less than or equal to 25°C, the probability that it will rain in the afternoon is 0.4. The temperature at noon is equally likely to be above 25°C, or at/below 25°C. What is the probability that it will rain in the afternoon on a day when the temperature at noon is above 25°C?
0.4 | |
0.6 | |
0.8 | |
0.9 |
0.6 = (0.5×0.4) + (0.5×P(rain at temp>25)
0.6 = (2) + (0.5×P(rain at temp>25)
P(rain at temp>25) = 0.8
Question 36 |
When a coin is tossed, the probability of getting a Head is p, 0<p<1. Let N be the random variable denoting the number of tosses till the first Head appears, including the toss where the Head appears. Assuming that successive tosses are independent, the expected value of N is
1/p | |
1/(1-p) | |
1/p2 | |
1/(1-p2) |
Multiply both sides with (1 - p) and subtract,
E - (1 - p) E = 1 × p + (1 - p) p + (1 - p) (1 - p) p + ......
E - (1 - p) E = p/(1 - (1 - p))
(1 - 1 + p) E = 1
pE = 1
E = 1/p
Question 37 |
f(b - a)
| |
f(b) - f(a) | |
![]() | |
![]() |
Then the probablity be area of the corresponding curve i.e.,

Question 38 |
1/2n
| |
1 - 1/n
| |
1/n!
| |
1-(1/2n)
|
Hence Probability = (2n - 1) /2n = 1 - 1/2n
Question 39 |
(i) Select a box (ii) Choose a ball from the selected box such that each ball in the box is equally likely to be chosen. The probabilities of selecting boxes P and Q are (1/3) and (2/3), respectively.Given that a ball selected in the above process is a red ball, the probability that it came from the box P is
4/19
| |
5/19
| |
2/9 | |
19/30 |
Q → 3 red, 1 blue
The probability of selecting a red ball is
(1/3)(2/5) + (2/3)(3/4)
2/15 + 1/2 = 19/30
The probability of selecting a red ball from P
(1/3) * (2/5) = 2/15
→ The colour of ball is selected is to be red and that is taken from the box P.
⇒ Probability of selecting a red ball from P/Probability of selecting a red ball
⇒ (2/15)/(19/30)
⇒ 4/19
Question 40 |
A bag contains 10 blue marbles, 20 green marbles and 30 red marbles. A marble is drawn from the bag, its colour recorded and it is put back in the bag. This process is repeated 3 times. The probability that no two of the marbles drawn have the same colour is
1/36 | |
1/6 | |
1/4 | |
1/3 |

Question 41 |
3 | |
4 | |
5 | |
6 |
The expected number of coin flips for getting n consecutive heads is(2^(n+1) -2)
The expected number of coin flips for getting n consecutive heads is(2^(n+1) -2)
The expected number of coin flips for getting n consecutive same tosses is (2^(n+1) -2) / 2.
where n = 2,
which is (2^(3+1) - 2) / 2 = 3
Question 42 |
3/8 | |
1/2 | |
5/8 | |
3/4 |
Then total number of possibilities = 24 = 16
No. of possibilities getting 2 heads and 2 tails is
HHTT, HTHT, TTHH, THTH, THHT, HTTH = 6
Probability of getting 2 heads and 2 tails is
= No. of possibilities/Total no. of possibilities = 6/16 = 3/8
Question 43 |
An examination paper has 150 multiple choice questions of one mark each, with each question having four choices. Each incorrect answer fetches -0.25 marks. Suppose 1000 students choose all their answers randomly with uniform probability. The sum total of the expected marks obtained by all these students is
0 | |
2550 | |
7525 | |
9375 |
Probability of selecting a wrong answer = 3/4
For correct answer +1, for wrong answer-0.25;
Expected marks for each question = (1/4) × 1 + (3/4) -(0.25)
= 1/4 + (-3/16)
= 4-3/16
= 1/16
= 0.0625
Expected marks for 150 questions = 150 × 0.625 = 9.375
The sum total of expected marks obtained by 1000 students is = 1000×9.375 = 9375
Question 44 |
nCd /2n
| |
nCd / 2d
| |
d/2n
| |
1/2d
|
Total no. of cases where n positions have any binary bit = 2n
The probability of 'd' bits differ = nCd / 2n
Question 45 |
![]() | |
![]() | |
![]() | |
![]() |

Above diagram shows the scenario of our question.
The length p of our position vector (x,y) is

Now we need to calculate the probability density function of X and Y.
Since distribution is uniform,
X goes from 0 to 1, so PDF(x) = 1/1-0 = 1
Y goes from 0 to 2, so PDF(y) = 1/2-0 = 1/2
Now we evaluate,

Question 46 |
![]() | |
![]() | |
![]() | |
![]() |
Question 47 |
44 | |
96 | |
120 | |
3125 |

Question 48 |
![]() | |
![]() | |
![]() | |
![]() |
P(A/B) = P(A∩B)/P(B)
= P(A)⋅P(B)/P(B) (consider P(A), P(B) are two independent events)
= 1
P(B/A) = P(B∩A)/P(A)
= P(B)⋅P(A)/P(A)
= 1/2
Question 49 |
![]() | |
![]() | |
![]() | |
![]() |
→ They representing the probability density functions of time taken to execute.
→ f1 can be executed in 'x' time.
f2 can be executed in 't-x' time.
→ The probability density function =

Question 50 |
![]() | |
![]() | |
![]() | |
![]() |
Atleast one head = 1/16
Atleast one tail = 1/16
Probability of getting one head and one tail is = 1 - 1/16 - 1/16 = 16-1-1/16 = 14/16 = 7/8
Question 51 |
0 | |
![]() | |
![]() | |
1 |
Pr(E1 ∪ E2) = 1
E1 and E2 are Independent.
P(E1 ∪ E2) = Pr(E1) + Pr(E2) - Pr(E1 ∩ E2)
1 = a + a - Pr(E1)⋅Pr(E2)
1 = a + a - a⋅a
2a - a2 = 1
a2 - 2a + 1 = 0
(a - 1)2 = 0
a = 1 Pr(E1) = 1
Answer: Option (D)
Question 52 |
There is a sample point at which X has the value 5. | |
There is a sample point at which X has value greater than 5. | |
There is a sample point at which X has a value greater than or equal to 5. | |
None of the above |
E(X) = x1P1 + x2P2 + ... + xnPn
In question, E(X) is given as 5.
E(X) = 5, 0≤Pi≤1
P1 + P2 + ... + Pn = 1 [Probability]
Therefore, E(X) = 5 is possible only if atleast one of the xi value is greater than 5.
Question 53 |
![]() | |
Events E1 and E2 are independent | |
Events E1 and E2 are not independent | |
![]() |

Question 54 |
![]() | |
![]() | |
![]() | |
![]() |
Total no. of possibilities are 8.
Probability of getting exactly one odd = 3/8
Question 55 |
The probability that it will rain today is 0.5. The probability that it will rain tomorrow is 0.6. The probability that it will rain either today or tomorrow is 0.7. What is the probability that it will rain today and tomorrow?
0.3 | |
0.25 | |
0.35 | |
0.4 |
P(Tomorrow) = 0.6
P(T∪To) = 0.7
P(T∩To) = P(T) + P(To) - P(T∪To)
= 0.5 + 0.6 - 0.07
= 1.1 - 0.7
= 0.4
Question 56 |
![]() | |
![]() | |
![]() | |
![]() |
1 - (5/6 × 5/6) = 1 - (25/36) = 11/36
Question 57 |
![]() | |
![]() | |
![]() | |
![]() |
E2 : Last card being ace
Note that E1 and E2 are dependent events, i.e., probability of last card being ace if first is ace will be lesser than the probability of last card being ace if first card is not ace.
So, probability of first card being ace = 4/52
Probability of last card being ace given that first card is ace is,
P(E2 / E1) = 3/51
∴ P(E1 and E2) = P(E1) ⋅ P(E2 / E1) = 4/52 * 3/51
Question 58 |
![]() | |
![]() | |
![]() | |
![]() |

Question 59 |
![]() | |
![]() | |
![]() | |
![]() |

Probability of first ball black and second one white is,

Question 60 |
P(A∩B) = P(A)P(B) | |
P(A∪B) = P(A) + P(B) | |
P(A|B) = P(A∩B)P(B) | |
P(A∪B) ≤ P(A) + P(B) |
(B) Happens when A and B are mutually exclusive.
(C) Not happens.
(D) P(A∪B) ≤ P(A) + P(B) is true because P(A∪B) = P(A) + P(B) - P(A∩B).
Question 61 |
P2 + P3 |
P3 = P(A) - P2
P(A) = P2 + P3
Question 62 |
Let A, B and C be independent events which occur with probabilities 0.8, 0.5 and 0.3 respectively. The probability of occurrence of at least one of the event is __________
0.93 |
Since all the events are independent, so we can write
P(A∪B∪C) = P(A) + P(B) + P(C) - P(A)P(B) - P(B)P(C) - P(A)P(C) + P(A)P(B) P(C)
= 0.8 + 0.5 + 0.3 - 0.4 - 0.5 - 0.24 + 0.12
= 0.93
Question 63 |
![]() | |
![]() | |
![]() | |
![]() |
Such as total no. of days in a week = 7
Total probability = 7 × 1/77 = 1/76
Question 64 |
For poisson distribution, the mean is twice the variance. | |
In queuing theory, if arrivals occur according to poisson distribution, then the inter-arrival time is exponentially distributed. | |
The distribution of waiting time is independent of the service discipline used in selecting the waiting customers for service. | |
If the time between successive arrivals is exponential, then the time between the occurences of every third arrival is also exponential. | |
Both (A) and (C). |
Option C is also False, because waiting time is dependent on the service discipline.